Exclusivity Regularized Machine
نویسنده
چکیده
It has been recognized that the diversity of base learners is of utmost importance to a good ensemble. This paper defines a novel measurement of diversity, termed as exclusivity. With the designed exclusivity, we further propose an ensemble model, namely Exclusivity Regularized Machine (ERM), to jointly suppress the training error of ensemble and enhance the diversity between bases. Moreover, an Augmented Lagrange Multiplier based algorithm is customized to effectively and efficiently seek the optimal solution of ERM. Theoretical analysis on convergence and global optimality of the proposed algorithm, as well as experiments are provided to reveal the efficacy of our method and show its superiority over state-of-the-art alternatives in terms of accuracy and efficiency.
منابع مشابه
Exclusivity Regularized Machine: A New Ensemble SVM Classifier
The diversity of base learners is of utmost importance to a good ensemble. This paper defines a novel measurement of diversity, termed as exclusivity. With the designed exclusivity, we further propose an ensemble SVM classifier, namely Exclusivity Regularized Machine (ExRM), to jointly suppress the training error of ensemble and enhance the diversity between bases. Moreover, an Augmented Lagran...
متن کاملCapturing topical content with frequency and exclusivity
Recent work in text analysis commonly describes topics in terms of their most frequent words, but the exclusivity of words to topics is equally important for communicating content. We introduce Hierarchical Poisson Convolution (HPC), a model which infers regularized estimates of the differential use of words across topics as well as their frequency within topics. HPC uses known hierarchical str...
متن کاملRegularized factor models
This dissertation explores regularized factor models as a simple unification of machine learning problems, with a focus on algorithmic development within this known formalism. The main contributions are (1) the development of generic, efficient algorithms for a subclass of regularized factorizations and (2) new unifications that facilitate application of these algorithms to problems previously ...
متن کاملRegularized factor models by Martha White
This dissertation explores regularized factor models as a simple unification of machine learning problems, with a focus on algorithmic development within this known formalism. The main contributions are (1) the development of generic, efficient algorithms for a subclass of regularized factorizations and (2) new unifications that facilitate application of these algorithms to problems previously ...
متن کاملRegularized least squares support vector regression for the simultaneous learning of a function and its derivatives
In this paper, we propose a regularized least squares approach based support vector machine for simultaneously approximating a function and its derivatives. The proposed algorithm is simple and fast as no quadratic programming solver needs to be employed. Effectively, only the solution of a structured system of linear equations is needed. 2008 Published by Elsevier Inc.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1603.08318 شماره
صفحات -
تاریخ انتشار 2016